
Requirements Analysis and Performance Evaluation
of SDN Controllers for Automotive Use Cases

Randolf Rotermund, Timo Häckel, Philipp Meyer, Franz Korf, and Thomas C. Schmidt
Dept. Computer Science, Hamburg University of Applied Sciences, Germany

{randolf.rotermund, timo.haeckel, philipp.meyer, franz.korf, t.schmidt}@haw-hamburg.de

Abstract—Future vehicles will be more connected than ever
leading to increased dynamics in vehicle on-board networks.
Software-Defined Networking (SDN) is a promising technology
to meet the emerging needs for flexibility and security in future
automotive use cases. Although SDN controllers have been
evaluated in data center networks, to the best of our knowledge
there is a lack of an analysis and performance evaluation of SDN
controllers for automotive use cases. In this work we provide a
detailed requirements analysis for the use of SDN controllers
in cars. Based on this requirements analysis we choose existing
controller implementations for a performance analysis. Finally,
we analyze automotive specific use cases for SDN controllers with
controller application examples and show how these can fulfill
additional requirements. Our evaluation provides a helpful basis
for the design and development of SDN controllers that can be
used in vehicles.

Index Terms—SDN, Software-Defined Networking, In-Vehicle
Networks, Performance Analysis, Requirements Analysis

I. INTRODUCTION

Modern cars implement functions using sensors, actuators,
and Electronic Control Units (ECUs). They are linked via
a combination of traditional bus systems such as Controller
Area Network (CAN) and Ethernet technologies for newly se-
lected links. In-vehicle networks will soon form flat, switched
Ethernet topologies [1] forwarding real-time and cross-traffic
concurrently. The Time-Sensitive Networking (TSN) collec-
tion of standards defined in IEEE 802.1Q-2018 [2] extends
Ethernet with the ability to provide Quality-of-Service (QoS)
guarantees and is the leading candidate for in-car networks.

Future cars will be connected with their environment
(Vehicle-to-X) and thus will have increased network dynamics.
This network traffic poses many challenges for safety critical
real-time systems. Software-Defined Networking (SDN) is
an impactful approach for dynamic traffic steering which
originated in campus and data center networks [3]. Traditional
network devices contain both the control plane, which is used
for network routing, and the data plane, which is used for
forwarding. In SDN the control plane, and the data plane
are separated. A logically centralized component called the
SDN controller implements the control plane while network
devices in the data plane are only used for forwarding. The
controller functionality can be enhanced with applications for
specific use cases. In recent years, use cases for SDN extend to
the vehicular domain. For example, the central control entity

This work is funded by the German Federal Ministry of Education and
Research (BMBF) within the SecVI project.

can help to manage the newly introduced dynamic traffic
and protect the safety, security, and real-time constraints of
a vehicle, which we analyzed in former work [4]. To utilize
SDN in cars, the controller must fulfill various requirements.
This work performs the necessary functional and performance
analysis of suitable SDN controllers.

This paper evaluates SDN controllers with the focus on the
use in a future automotive environments. One contribution and
the base of this paper is a detailed requirements analysis for
SDN controllers in cars. These requirements are used to pick
the most relevant existing SDN controller implementations
and examine the best fitting candidates in a performance
analysis. Based on controller application examples we show
the impact of SDN in a realistic vehicle on-board network
and how controller applications can fulfill specific automotive
requirements. Analysis of SDN controllers provide a detailed
view on the current state of SDN controller capabilities and
gives information about the fields in which SDN controllers
must be adapted for the use in future vehicles.

The remainder of this paper is structured as follows. Sec-
tion II gives an overview on related work. Section III presents
all chosen requirements for SDN controllers in a vehicle. In
section IV all controller candidates are listed. Section V shows
the process and the findings of the performance analysis. The
controller application examples are described in Section VI.
This paper ends with a conclusion and outlook in Section VII.

II. BACKGROUND & RELATED WORK

Current vehicle on-board networks use multiple bus sys-
tems. Future in-vehicle networks will transform to flat Ethernet
topologies [1]. Vehicle on-board communication consists of
concurrent best effort and safety critical traffic. Real-time
Ethernet extensions like IEEEs Time-Sensitive Networking
(TSN) (802.1Q-2018 [2]) provide robust QoS guarantees for
a safe and real-time proof internal communication.

In Software-Defined Networking, forwarding devices only
implement the data plane. A central network controller takes
over the tasks of the control plane. Most of the available
SDN controllers use OpenFlow [5] as the Southbound API to
communicate with forwarding devices. The forwarding devices
use programmable flow tables to decide on the forwarding of
frames. The controller installs rules into these flow tables to
control the forwarding. Another way of managing heteroge-
neous devices in SDN is provided through NETCONF protocol
(RFC 6241 [6]) with the data modeling language YANG. A

YANG model contains a data model of the network device
and possible interactions. NETCONF uses the YANG model to
define remote procedure calls to read state data and update the
configuration of a network device. The SDN controller exposes
information gathered from forwarding devices to controller
applications. A variety of applications can be added to the
controller which allow users to customize the behavior of
the network. The controller applications use the controller’s
Northbound API to lookup the network state and to program
the network. Further information about SDN can be found in
the survey of Kreutz et al. [7].

In previous work, we examined the use of Time-Sensitive
Software-Defined Networking (TSSDN) for in-vehicle net-
works [4], which enables the use of SDN in the automotive
network while preserving the QoS guarantees provided by
TSN. In automotive networks, SDN can add much value
regarding safety, robustness, security, cost efficiency, and flex-
ibility with easily updatable network configurations.

A lot of research has already been done on the performance
of SDN controllers. Gonzales et al. [8] provide insights into
the design of fault tolerant controllers. Mathebula et al. [9]
and Cui et al. [10] have carried out detailed research into
security deficits in controllers and corresponding solutions.
Recent work in the field of performance analysis of SDN
controllers has been done by Mostafavi et al. [11] evaluating
controller performance and scalability in a comparative study.
Mamushiane et al. [12] and Tello et al. [13] examine a
collection of controllers using similar methodologies to the
ones defined in RFC-8456 [14].

For use in the automotive domain, SDN controllers must
fulfill automotive requirements. However, all of these investi-
gations, SDN controllers are examined from the perspective of
data center or campus networks. To the best of our knowledge,
a controller evaluation according to the requirements of a
car is still missing. This work focuses on the use of SDN
controllers in vehicles, so only automotive-relevant metrics are
considered.

III. AUTOMOTIVE REQUIREMENTS ON SDN
CONTROLLERS

In vehicles, SDN controllers can be used for the dynamic
control of network paths. We assume that the SDN controller
is installed on a dedicated computer in the car, which is
connected to the vehicle’s on-board network. The collected
requirements for the use of SDN controllers in cars are
depicted in Table I. We differentiate between requirements that
must be available as features of the controller implementation
(evaluated in Section IV), depend on the performance of the
controller (evaluated in Section V), or can be implemented
in a controller application (evaluated in Section VI). The
requirements are divided into groups and are explained below.

A. Real-Time Requirements

1) Quality-of-Service: Future vehicle on-board networks
will transport safety critical real-time traffic and best effort

TABLE I
REQUIREMENTS FOR SDN CONTROLLERS IN IN-VEHICLE NETWORKS

ID Requirement Evaluation Type (Section)
A. Real-time requirements

1) Quality-of-Service Performance (V-A), Application (VI-1)
2) Scheduled configurations Application (VI-2)
3) Short start-up time Performance (V-B)

B. Safety requirements

1) Transactions Application (VI-3)
2) Redundant paths Feature (IV)
3) Link failure detection Performance (V-C)
4) Controller redundancy Feature (IV, V-D)

C. Security requirements

1) Secure Southbound API Feature (IV)
2) Secure Northbound API Feature (IV)
3) Application flow ownership Feature (IV)
4) Access control Application (VI-4)
5) Network statistics Application (VI-5)

D. Remaining functional requirements

1) Scalability –
2) NETCONF/YANG support Feature (IV)

E. Remaining non-functional requirements

1) Software quality Feature (IV)
2) Cost-efficiency –
3) Embedded system compatibility Feature (IV)

traffic concurrently. Thus, the network must provide Quality-
of-Service (QoS) guarantees for critical flows. Real-time Eth-
ernet extensions such as IEEE 802.1Q Time-Sensitive Net-
working (TSN) [2] can provide robust QoS guarantees. The
SDN controller must enforce these guarantees by mapping
each flow to certain QoS classes modelled in TSN. TSN
specifies YANG data models (see 802.1Qcp), which can be
used to configure the TSN components of network devices
via the NETCONF protocol (RFC 6241 [6]), e.g. reprogram
network schedules.

2) Scheduled configurations: Vehicle on-board networks
use offline configured synchronous traffic (Time Division
Multiple Access (TDMA)) for selected safety critical real-
time communication. Therefore, devices contain configured
periods with reserved timeslots that need to be synchronized
in the network. This will not change with the introduction
of SDN. If a controller makes changes to the configuration
of synchronous traffic on multiple forwarding devices, these
changes also need to be synchronized to a specific period
so that all network devices update their state at the same
time. Otherwise, inconsistency in the network traffic may
occur. To avoid such a risk, an SDN controller must support
scheduled configurations. Mizhrah et al. already presented a
method for implementing accurate time-based updates [15].
The TSN YANG models also provide a mechanism to apply
configuration changes at a specific time.

3) Short start up time: Almost all ECUs of a parked vehicle
are inactive. As soon as the driver contacts the car, e.g., via
keyless entry, ECUs and services are activated step by step. In
current cars many ECUs, e.g. the door ECUs must be working
after approximately 150ms to 200ms. The network must be
functional to allow communication between ECUs. Network
devices can have an offline configuration, which activates on
start up and is functional without controller interaction. The

network controller needs to be started before any additional
flows can be added. This means that the requirements are not
as high as without an offline configuration but are still in the
range of a few seconds, e.g. for infotainment services.

B. Safety Requirements

1) Transactions: To provide functions of single network
devices like firewalls and load balancing several flows have
to be established by the controller. Each individual flow is
important for the correct execution of a function. Sometimes
multiple network paths must be changed at once to implement
a complete function. According to Cui et al. an SDN controller
should provide atomic transactions [16]. This means that a
function can only be executed if all intended flows of a set of
changes have been successfully established. If one or more
flows could not be set up for certain reasons, all changes
must be reset. This approach makes it possible to prevent
inconsistency in the network, making it essential for the safe
use of an SDN controller in the vehicle.

2) Redundant paths: A vehicle on-board network needs
redundant network paths in case a path gets interrupted or
is not available. A controller should be capable of managing a
network with redundant paths. Safety critical network paths in
cars will be configured redundantly in an offline configuration.
Still, dynamically configured traffic needs to be rerouted by
the SDN controller if a link fails. Management of redundant
paths is a feature that most SDN controllers possess, especially
all controllers supporting OpenFlow.

3) Link failure detection: Management of redundant paths
is only possible when an SDN controller is able to detect
changes in the network especially errors such as a broken
link on a forwarding device. In case of a defect link the
SDN controller must notify the driver e.g. by switching
the malfunction indicator light on. This requirement is only
fulfilled if the detection time is acceptable for a vehicle on-
board network.

4) Controller redundancy: An SDN controller can be a sin-
gle point of failure. Through redundancy, an SDN controller is
logically centralized but physically distributed in the network.
Redundant SDN controllers are often referred to as a controller
cluster with 2 or more controller instances. The instances
of a cluster must implement inter-controller communication
with a master selection algorithm [17], and a shared network
information base [8] to enable take-over on failure. Forwarding
devices with statically configured flows can operate safety-
critical traffic without the SDN controller and therefore there
is no need for redundancy. On the other hand, if an SDN
controller is used to steer safety-critical traffic, it is indeed
a safety-critical component needing redundancy with at least
a second controller instance in hot standby. If all controllers
crashed, a fallback configuration on the forwarding devices is
required to keep the system functional. As mentioned earlier
most driving related traffic will be configured and verified
offline. This fallback configuration preserves all safety critical
network flows and makes the forwarding devices independent
of the controller [18]. Although hot redundancy might not be

needed in in-vehicle networks today, it might be needed for
future scenarios, such as autonomous driving. The quality of
the redundancy depends on the time it takes to handle a failure,
which is evaluated in the performance analysis.

C. Security Requirements

Security requirements address the information security of
the vehicle. Manipulation or interruption of safety-critical
communication due to an attack can have fatal consequences.
Hence, new standards such as the ISO/SAE 21434 [19] regu-
late the implementation of security methods in road vehicles.

1) Secure Southbound API: In SDN the connection be-
tween forwarding devices and the SDN controller via the
Southbound API must be trusted at all time. It must be assured
that attackers cannot imitate the forwarding devices or the
SDN controller and thus change the network behavior. In data-
center environments malfunctioning forwarding device, or the
SDN controller can be quarantined [20] and flows rerouted.
This procedure is not applicable in the automotive environ-
ment, because of the small numbers of network participants
in comparison to data centers. To prevent the controller and
forwarding devices from being attacked by each other, there
must be a secure communication between the controller and
switches ensured [9]. The trust between the controller and
switches can only be ensured when there is an additional
feature to secure the Southbound API.

2) Secure Northbound API: Multiple controller applica-
tions can run on an SDN controller using the Northbound
API to implement network control mechanisms. To protect
the control logic from malicious applications, there must be
controller application trust establishment [9]. Applications
must not be able to alter a network configuration without
correct access rights. This requirement is fulfilled when a
controller provides this function as an additional feature.

3) Application flow ownership: As multiple controller ap-
plications can exist on one controller, flows of forwarding
devices can be altered by more than one application. If several
applications can influence the network, two applications may
attempt to manipulate the same network path and conflicts
may occur. In addition, an application could modify the flows
installed by other applications. A compromised application
would then be able to remove flows created by other appli-
cations. To prevent this, a flow-application mapping must be
provided. This ensures that applications can only remove or
change flows that they installed themselves. The fulfillment of
this requirement can only be provided as an additional feature
the controller possess.

4) Access control: In automotive networks, some control
messages should only be sent from a selected ECUs, e.g. the
brake signal. It would be a security threat if any other device
e.g. the infotainment system would be able to send those
messages. Controller applications should therefore enforce this
behavior by controlling which ECU can access which flows
and send certain information.

5) Network statistics: Networks statistics are a collection
of data obtained from the APIs of the controller e.g. packets

TABLE II
MATRIX EVALUATING WHICH FEATURE REQUIREMENTS FROM SECTION III ARE MET BY THE EXAMINED SDN CONTROLLER IMPLEMENTATIONS.

(THE CANDIDATES SELECTED FOR OUR EVALUATION ARE MARKED IN GREEN)

Controller Redundant
paths

Controller
redundancy

Secure North-
bound API

Secure South-
bound API

Application-flow
ownership

NETCONF/
YANG support

Software
quality

Embedded system
compatibility

ONOS X X X X X X - X

ODL X X X X X X - X

Lumina X X X X X X - X

Huawei Agile X X X X X X - X

NOX X X X X X X X X

POX X X X X X X X X

RYU X X X X X X - X

Beacon X X X X X X X X

OpenMUL X X X X X X X X

RunOS X X X X X X - X

Trema X X X X X X - X

Faucet X X X X X X - X

OpenContrail X X X X X X X X

Floodlight X X X X X X X X

processed by the controller or forwarding devices. This data is
mandatory to reveal conspicuous behavior or even errors and
is important for maintenance and network analysis.

D. Remaining functional requirements

1) Scalability: Most SDN controller implementations are
designed for large scale deployments, such as data center
environments, which frequently change in size. Hence SDN
controllers usually must be scalable in relation to their envi-
ronment. Regarding the rather small and static structure of an
in-vehicle network, scalability is not an important requirement
for these networks. It is listed to underline the unimportance
of an usually relevant requirement for SDN controllers and is
therefore not evaluated.

2) NETCONF/YANG support: Automotive Ethernet net-
works will most likely use the IEEE Time-Sensitive Net-
working (TSN) standard collection. The IEEE is working on
the standardization (see IEEE 802.1Qcc & 802.1Qcp) of a
Central Network Controller (CNC) configuring TSN devices
via the NETCONF protocol (RFC 6241 [6]). SDN controller
deployments in cars must support the configuration of the
TSN components and therefore be able to manage YANG data
models via NETCONF.

E. Additional non-functional requirements

1) Software quality: Software quality refers to the certifica-
tion of the development process, software documentation and
implementation according to the state of the art. A controller
must fulfill all these important aspects of software quality
required by automotive standards.

2) Cost-efficiency: Components in automotive networks
must be cost effective in terms of hardware, licensing, and
maintenance. Excessive system requirements of an SDN con-
troller could mean that the installation of an SDN controller
would not be worthwhile. This effect is even more important
if there are several redundant SDN controllers running on

different computers. Worth is a factor which depends on the
financial resources available and is therefore not evaluated.

3) Embedded system compatibility: Considering cost effi-
ciency and real-time requirements, an SDN controller should
be compatible with hardware of embedded systems. In this
case the SDN controller could run on cost-efficient and auto-
motive proof ECU.

IV. CONTROLLER CANDIDATE SELECTION

We collected a list of over thirty SDN controllers containing
both open source and commercial representatives. A portion of
this list can be found in Table II. The most promising controller
candidates (marked in green) were chosen for a more detailed
evaluation. Most SDN controller implementations are built
for data centers. To the best of our knowledge, none has
been created for the automotive use case. Hence, no SDN
controller on the market is able to fulfill all criteria of our
requirements analysis. Table II contains only the requirements
from Table I, which must be supported by the SDN controller
implementation itself and cannot be implemented by SDN
controller applications, for example.

Through the OpenFlow protocol all controllers can manage
redundant paths. Controllers made for campus networks and
prototyping like Ryu, NOX, POX, Beacon and Trema do not
have support for redundancy. Only a few controllers have a
secured Northbound API, but all controllers have a secured
Southbound API due to the Transport Layer Security (TLS)
support of OpenFlow. None of the examined SDN controllers
can set ownership of flows for applications. ONOS, ODL,
Lumina, Huawei Agile, Ryu, OpenMUL and OpenContrail all
support the NETCONF protocol. It is not clear to what extent
the SDN controllers meet the automotive requirements for soft-
ware quality. Furthermore, the software quality requirements
themselves are still partially open, as they depend on the use
of the SDN controllers. Therefore, only active development is

considered here. SDN controllers whose last deployment was
more than a year ago are marked with an X. Only eight of
over thirty controllers had a version not older than one year.
Besides, RunOS the embedded system compatible controllers
OpenMUL and NOX are not up to date.

The main selection considered all controllers which fulfilled
as many of the controller features as possible. In the end
the only SDN controllers fitting most of the requirements
were the JAVA-based controllers ONOS, OpenDayLight and
Lumina. The Huawei Agile controller and OpenContrail have
very high system requirements and could not be installed on
our test environment. Therefore, both controllers were not
further considered. To have a more heterogeneous collection of
controllers we added the C-based OpenMUL controller and the
Python-based Ryu controller, although both controllers fulfill
fewer requirements than the main selection.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the chosen SDN
controllers ONOS, ODL, Lumina, RYU and OpenMUL for all
measurable requirements from Section III. Because of differ-
ences in the controller implementations not every measurement
could be evaluated for every controller. The study was carried
out on a Laptop with an Intel Core i7-4800MQ CPU @
2.70GHz x 8 cores with 16 GB RAM running Ubuntu 16.04.
Figure 1 shows the testbed used in the performance evaluation
with the tools Mininet, Wireshark, and Cbench 1.

Cbench is an established benchmarking tool for SDN con-
trollers. It is used to measure the controller response time (la-
tency) and packet-in message rate (throughput) by emulating
multiple OpenFlow switches and sending packet-in messages
to a connected SDN controller. The throughput mode generates
as many packet-in messages as possible and sends them to
the connected controller, while the latency mode waits for a
controller response before it sends the next message.

We use Mininet to simulate networks of different sizes and
structures and measure network traffic between the emulated
switches and the SDN controller using Wireshark. All SDN
controllers have an OpenFlow and forwarding application
enabled that creates flows for packet-in messages. All metrics
have been tested with 10 or less forwarding devices, due to
the relatively small and static in-vehicle network environment.

A. Quality-of-Service

QoS is provided by the forwarding devices in the network
for all known flows. For dynamically created network flows
the controller must process incoming packets in an appropriate
time that does not violate the deadlines. The reference values
for the time to be respected are the maximum end-to-end
delays of vehicle services. Lim et al. of the BMW Research
Group specified 10ms maximum end-to-end delay for control
data and 150ms for multimedia data [21]. We measure the
asynchronous message processing time which is defined as
the delay between the arrival of an asynchronous message

1 Cbench: github.com/mininet/oflops/tree/master/cbench

Controller candidate

Cbench

Packetin

Pa
ck

et
ou

t Mininet

1 virtual host per switch

N virtual switches

...

Controller candidate

Wireshark

Port 6653 & 6633

Fig. 1. Performance analysis testbed using Cbench, Mininet, and Wireshark

min avg max
0

200

400

600

800

1000

1200

Ti
m

e
in

 µ
s

14 26

766

15 27

136
227

300

1002

23 33
103

ONOS ODL Ryu OpenMUL

Fig. 2. Maximum processing time of packet-in messages from 10 measure-
ments using latency mode in Cbench

at the controller port, and the subsequent outgoing message
from the controller. The processing time is only relevant for
the first packet of a new flow as the controller will implement
forwarding rules that handle the flow in a forwarding device.

The asynchronous message processing time is tested via
Cbench using the latency mode. It is repeated 10 times with
a duration of 10 seconds. Cbench generates packet-ins for
100.000 MAC-addresses to ensure uniqueness of the generated
flows. The results are depicted in Figure 2. Lumina was not
tested because it does not provide a forwarding application
that installs flows within a forwarding device.

The maximum asynchronous message processing time of all
tested SDN controllers is about 1ms. ODL has a maximum
processing time of 136 µs, OpenMUL is at 103 µs, ONOS is
at 766 µs and for RYU it is the highest with 1002 µs. This data
indicates that all tested SDN controllers have a low enough
processing time. In terms of the maximum end-to-end delays
given above and due to the particularly low processing time
of the OpenMUL SDN controller, which is implemented in
C, only a negligible portion of time would be added when
a controller would have to establish a new flow. To manage
QoS not only the processing time is important but there also
must be a guarantee that the processing time won’t exceed a
certain limit. The values of ONOS and Ryu have high jitter and
none of the controllers gives a guarantee that these times are

min avg max

10−1

100

101

102

Ti
m

e
in

 s

ONOS ODL Lumina Ryu OpenMUL

Fig. 3. Start-up time of SDN controllers until the OpenFlow port can be
reached (10 measurements on a logarithmic scale)

respected in every case, which is unacceptable for a real-time
system. If these times are always guaranteed, all examined
controllers could manage every automotive specific traffic.

B. Short Start-Up Time

In today’s cars the start-up time of ECUs must not exceed
200ms, while multimedia- and other non-critical applications
have a couple of seconds to start (see Section III). With a start-
up configuration the switches can handle the static in-vehicle
traffic without a controller. Still, the SDN controller should be
available for other applications.

We measure the start-up time of a controller as the time
between the start of the controller and all applications being
completely operational. The start-up time was obtained with by
measuring how long it takes from the controller start until the
OpenFlow ports 6653 or 6633 are up. Figure 3 shows start-
up time on a logarithmic scale. Although the test machine
is more capable than a conventional ECU, the controllers
needed several seconds to start up. The biggest part of the
waiting time is caused by starting the system environment
of the controller. ONOS and ODL have a relatively constant
start-up time around 20 s while Lumina even reaches over
70 s. RYU has a constant boot up time of 1 s. Only the C
representative OpenMUL is below 200ms which clearly shows
the advantage of embedded system capable controllers for in-
vehicle networks. The results of the OpenMUL SDN controller
meet the requirements of automotive applications.

C. Link Failure Detection

In a network design with redundant paths, the SDN con-
troller has the possibility to dynamically change network
paths to prevent disconnection. This can only be done if the
controller detects link failures as soon as possible.

Link failure detection is measured using the topology
change detection time of SDN controllers. When an Open-
Flow switch detects a change on its ports it sends a port
status message to the controller. Then the controller sends a
Link Layer Discovery Protocol (LLDP) message to refresh

min avg max
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
in

 s

1.0 1.1
1.3

0.4

1.1

2.4

0.9

2.1

2.8

0.3

0.9

2.1

0.1

0.6

1.0

ONOS Ryu ODL Lumina OpenMUL

Fig. 4. Time between changes in the network topology, and their detection
by the SDN controllers emulated with Mininet (10 measurements)

the network topology. The topology change detection time
is measured as the time between the port status message,
and the corresponding LLDP message. For this analysis a
Mininet network with one OpenFlow switch and one host
was emulated. The connection between the switch and its host
was interrupted to generate a port status message. Wireshark
captured the relevant packets.

As shown in Figure 4, the OpenDayLight SDN Controller
has the highest change detection time of nearly 3 s. Apart
from ONOS, all controllers have a maximum value of over 2 s
and a minimum value of less than 1 s. ONOS has a relatively
constant change detection time of 1 s, while the others have
a relatively large difference between the minimum and the
maximum value.

The link failure detection time of all controllers is too high
in relation to the 150ms maximum end-to-end delay of all
automotive traffic types. With these values the maximum end-
to-end delay of any automotive traffic would be exceeded mul-
tiple times before a corresponding action could be executed.
The minimum values of the OpenMUL controller, indicate that
it is possible for controllers to comply with the requirements.

D. Controller Redundancy

For redundant controllers in a controller cluster the failover
time must be minimal. This time indicates how long it takes a
controller cluster to fully replace the function of an unavailable
controller. The failover time indicates how long the controller
cluster is not available to manage new flows. A new controller
instance must maintain all flows to prevent interruption.

The controller failover time was only tested on ONOS and
ODL. RYU does not support redundancy, and the system
requirements for multiple Lumina controller instances are too
high for the test environment. In our test OpenMUL only
executed a failover only when the controller was shutdown
gracefully, for this reason the results of OpenMUL were
also not considered although it supports redundancy. When
a controller of a cluster has a fault, the cluster has a mech-

min avg max
0

2

4

6

8

10

12
Ti

m
e

in
 s

1.9
2.3

2.9
3.8

6.4

9.6

ONOS ODL

Fig. 5. Failover time until a failed controller is replaced by a hot standby
instance of the cluster (10 measurements)

anism to report the fault to the other members of the cluster
and replace the controller. Forwarding devices, which were
managed by the failed controller must be assigned to another
active controller. This process is done with the OpenFlow
role request and role reply messages. Controller failover time
is measured as the time between a controller fault, and the
role reply of the last unassigned switch. A Cluster with 3
controllers was created for the tested SDN controllers. A linear
topology with 2 switches and 2 hosts was emulated. Flows are
created between two hosts and UDP-traffic is generated for 60
seconds between the hosts to see if any packets are lost during
the failover. The primary controller of the cluster gets turned
off after 30 seconds. The network was captured via Wireshark.

Both controllers had no problem with maintaining the
preconfigured flows in the switches after the failure and no
packets were lost. Figure 5 shows how ODL and ONOS
performed. With a maximum failover time of 3 s ONOS is
considerably faster than ODL with 10 s. The results of over
a second are too high for the in-vehicle environment if the
controller manages and installs safety-critical flows. If the
controller manages only non-safety-critical communication the
results would be acceptable as this way functions such as
multimedia applications could be maintained with only a small
interruption. Still, it is questionable if controller redundancy
is needed for the in-vehicle network.

VI. CONTROLLER APPLICATION EXAMPLES

The controller application examples demonstrate advantages
of an SDN controller for vehicle on-board networks. We show
how controller applications can fulfill the requirements QoS,
scheduled configurations, transactions, access control, and
network statistics from Section III. We use ONOS as our SDN
controller because it is one of the better performing candidates,
is well documented, and easy to setup. The applications are
tested in a realistic vehicle on-board network.

Our vehicle on-board network is based on a real production
car. The original network contains domain CAN busses and
uses a central gateway architecture for transmission over

CAN ECUsCAN ECUs

.........

CAN ECUs

...

ZC_FRZC_FRZC_FRZC_FR

ZC_FLZC_FLZC_FLZC_FL ZC_RLZC_RLZC_RLZC_RL

ZC_RRZC_RRZC_RRZC_RR
InfotainmentInfotainmentInfotainmentInfotainment

CameraCameraCameraCamera

TelematicsTelematicsTelematicsTelematics

WifiWifiWifiWifi LTELTELTELTEWifi LTE

LIDARLIDARLIDARLIDAR

CAN ECUsCAN ECUs

.........

CAN ECUs

...

CAN ECUsCAN ECUs

.........

CAN ECUs

...

CAN ECUsCAN ECUs

.........

CAN ECUs

...

SDN

Controller

SDN

Controller

Switch FrontSwitch Front Switch RearSwitch RearSwitch Front Switch Rear

ECU switch
CAN-Ethernet

gateway
CAN-Bus Ethernet Link (1Gbit/s)

Fig. 6. Network topology of our automotive case study

domain boundaries. We converted the original CAN bus archi-
tecture into an Ethernet topology which is depicted in Figure 6.
In this topology all ECUs are assigned to a zone according to
their physical location in the vehicle (Front Left (FL), Front
Right (FR), Rear Left (RL), Rear Right (RR)). Each zone has
one zonal controller (ZC) connected to all CAN devices in
its vicinity and to the Ethernet backbone. A ZC acts as a
gateway between the CAN busses and the Ethernet backbone
and executes other computation intensive tasks. The Ethernet
backbone consists of two OpenFlow switches. This switch is
capable of traffic prioritization with 802.1Q priorities, but it
does not provide any other TSN features. The ONOS SDN
controller runs on a dedicated ECU and is connected to
the management port of the switches. Future networks will
contain more Ethernet ECUs. Hence, we have introduced
some additional ECUs that add native Ethernet traffic such
as video streams and LIDAR data. The following describes
how requirements can be fulfilled by controller applications.

1) Quality of Service: This controller application assigns
each flow to a specific QoS queue. TSN is not supported
by the switches so there is no scheduling in our prototype.
Still, QoS is guaranteed by strict priority queues. The switch
prioritizes packets when they are forwarded according to the
VLAN priority of the queue, which the controller application
has assigned to the flow. If no queue is specified in the flow
rule the switch prioritizes via the VLAN Priority Code Point.

2) Scheduled configurations: This application adds an ex-
ecution timestamp to the configuration changes in the for-
warding devices. The implementation uses corresponding TSN
YANG models and the NETCONF protocol. Together with a
system-wide synchronized clock the changes can be executed
on multiple devices simultaneously. Due to the lack of time
synchronization in the used forwarding devices this application
could not be deployed in the presented prototype.

3) Transactions: A controller application installs multiple
flows in one bulk operation from an offline configured flow
list. This allows an expert to configure and verify very precise
flow rules for a specific situation. For example, changing the

vehicle on-board network from the parking- to the driving
state, which will prohibit some flows while prioritizing others.
Such measures restrict the allowed network traffic to the
smallest number possible for each situation. Still, it does not
implement a complete transaction and there is no automatic
rollback implemented when some flows are not installed.

4) Access control: An access control list application allows
the dynamic forwarding of incoming data packets based on a
whitelist and blacklist containing protocol types, IP addresses
or full network flow descriptions. This increases the flexibility
of the network by allowing the installation of dynamic flows
while also restricting the access to on specific flows.

5) Network statistics: The SDN controller can gather net-
work statistics. An application collects logs of reported, un-
known or blacklisted behavior as well as statistics of forward-
ing devices. Those can then be evaluated, and flows can be
changed accordingly.

VII. CONCLUSION & OUTLOOK

SDN can help to manage the dynamic traffic and protect
the safety, security, and QoS constraints of the vehicle. To
utilize SDN in cars, the SDN controller must fulfill various
requirements. We collected automotive specific requirements
on SDN controllers and categorized them as controller fea-
tures, performance measurements and controller applications.

Based on compliance to the controller feature requirements
we chose controller candidates for our performance evaluation.
No controller implementation was able to fulfill all feature
requirements. All of them lack security features, most of them
are not compatible to embedded systems because of their
programming language and resource consumption, and many
of them are out of date. We selected the most promising
candidates to evaluate their performance. All tested controllers
have an acceptable processing time, but no controller gives a
guarantee that these values are always respected. The start-
up time of the majority of the tested SDN controllers is
too high for a vehicle, only the C representative OpenMUL
has an acceptable start-up time of 200ms. The failover time
of ONOS and ODL is too high for safety critical automo-
tive communication. However, it is questionable if controller
redundancy is needed for non-safety-critical flows in the
vehicle on-board network. Our controller application examples
deployed in a realistic automotive network demonstrate how
controller applications can be used to adapt a controller to
fulfill additional requirements.

It was confirmed that SDN controllers must undergo a
redesign for a safe installation in future vehicles. Future work
should develop an automotive specific SDN controller imple-
mentation meeting the requirements discussed in this paper.
In particular, the QoS requirements and the compatibility to
embedded systems should be respected regarding resource
consumption and the choice of programming language. In
addition, an analysis of specific use cases for SDN controllers
in vehicles could be performed. Various controller applications
may be developed that fulfill additional requirements.

REFERENCES

[1] S. Brunner, J. Roder, M. Kucera, and T. Waas, “Automotive E/E-
Architecture Enhancements by Usage of Ethernet TSN,” in 2017 13th
Workshop on Intelligent Solutions in Embedded Systems (WISES). Pis-
cataway, NJ, USA: IEEE Press, Jun. 2017, pp. 9–13.

[2] IEEE 802.1 Working Group, “IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks,” IEEE, Standard Std
802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), Jul. 2018.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[4] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-Defined
Networks Supporting Time-Sensitive In-Vehicular Communication,” in
2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring).
Piscataway, NJ, USA: IEEE Press, Apr. 2019, pp. 1–5.

[5] Open Networking Foundation, “OpenFlow Switch Specification,” ONF,
Standard ONF TS-025, 2015.

[6] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” IETF, RFC 6241, June 2011.

[7] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan. 2015.

[8] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A
Fault-Tolerant and Consistent SDN Controller,” in 2016 IEEE Global
Communications Conference (GLOBECOM). Piscataway, NJ, USA:
IEEE Press, Dec 2016, pp. 1–6.

[9] I. Mathebula, B. Isong, N. Gasela, and A. M. Abu-Mahfouz, “Analysis of
SDN-Based Security Challenges and Solution Approaches for SDWSN
Usage,” in 2019 IEEE 28th Int. Symposium on Industrial Electronics
(ISIE). Piscataway, NJ, USA: IEEE Press, June 2019, pp. 1288–1293.

[10] H. Cui, Z. Chen, L. Yu, K. Xie, and Z. Xia, “Authentication Mechanism
for Network Applications in SDN Environments,” in 2017 20th Inter-
national Symposium on Wireless Personal Multimedia Communications
(WPMC). Piscataway, NJ, USA: IEEE Press, Dec 2017, pp. 1–5.

[11] S. Mostafavi, V. Hakami, and F. Paydar, “Performance Evaluation
of Software-Defined Networking Controllers: A Comparative Study,”
Journal of Computer and Knowledge Engineering, 2020, Mar. 2020.

[12] L. Mamushiane, A. Lysko, and S. Dlamini, “A Comparative Evaluation
of the Performance of Popular SDN Controllers,” in 2018 Wireless Days
(WD). Piscataway, NJ, USA: IEEE Press, Apr. 2018, pp. 54–59.

[13] A. Tello and M. Abolhasan, “SDN Controllers Scalability and Perfor-
mance Study,” in 2019 13th Int. Conf. on Signal Processing and Com.
Systems (ICSPCS). Piscataway, NJ, USA: IEEE Press, 2019, pp. 1–10.

[14] V. Bhuvaneswaran, A. Basil, M. Tassinari, V. Manral, and S. Banks,
“Benchmarking Methodology for Software-Defined Networking (SDN)
Controller Performance,” IETF, RFC 8456, October 2018.

[15] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Using
Timestamp-Based TCAM Ranges to Accurately Schedule Network
Updates,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp.
849–863, April 2017.

[16] J. Cui, S. Zhou, H. Zhong, Y. Xu, and K. Sha, “Transaction-Based
Flow Rule Conflict Detection and Resolution in SDN,” in 2018 27th
International Conference on Computer Communication and Networks
(ICCCN). Piscataway, NJ, USA: IEEE Press, Jul. 2018, pp. 1–9.

[17] O. Blial, M. Ben Mamoun, and R. Benaini, “An Overview on
SDN Architectures with Multiple Controllers,” Journal of Computer
Networks and Communications 2016, vol. 2016, Apr. 2016.

[18] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers, “Fast Recovery
in Software-Defined Networks,” in 2014 Third European Workshop on
Software Defined Networks. Piscataway, NJ, USA: IEEE Press, Sep.
2014, pp. 61–66.

[19] Int. Org. for Standardization, “Road vehicles — Cybersecurity engineer-
ing,” ISO, Geneva, CH, Standard ISO/SAE DIS 21434, 2020.

[20] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards Secure and
Dependable Software-Defined Networks,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 55–60.

[21] H.-T. Lim, K. Weckemann, and D. Herrscher, “Performance Study of
an In-Car Switched Ethernet Network without Prioritization,” in Com-
munication Technologies for Vehicles, T. Strang, A. Festag, A. Vinel,
R. Mehmood, C. Rico Garcia, and M. Röckl, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 165–175.

